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Abstract 

Background:  Simao pine is one of the primary economic tree species for resin and timber production in southwest 
China. The exploitation and utilization of Simao pine are constrained by the relatively lacking of genetic information. 
Construction a fine genetic linkage map and detecting quantitative trait locis (QTLs) for growth-related traits is a pre-
requisite section of Simao Pine’s molecular breeding program.

Results:  In our study, a high-resolution Simao pine genetic map employed specific locus amplified fragment 
sequencing (SLAF-seq) technology and based on an F1 pseudo-testcross population has been constructed. There 
were 11,544 SNPs assigned to 12 linkage groups (LGs), and the total length of the map was 2,062.85 cM with a mean 
distance of 0.37 cM between markers. According to the phenotypic variation analysis for three consecutive years, a 
total of seventeen QTLs for four traits were detected. Among 17 QTLs, there were six for plant height (Dh.16.1, Dh16.2, 
Dh17.1, Dh18.1–3), five for basal diameter (Dbd.17.1–5), four for needle length (Dnl17.1–3, Dnl18.1) and two for needle 
diameter (Dnd17.1 and Dnd18.1) respectively. These QTLs individually explained phenotypic variance from 11.0–
16.3%, and the logarithm of odds (LOD) value ranged from 2.52 to 3.87.

Conclusions:  In our study, a fine genetic map of Simao pine applied the technology of SLAF-seq has been con-
structed for the first time. Based on the map, a total of 17 QTLs for four growth-related traits were identified. It pro-
vides helpful information for genomic studies and marker-assisted selection (MAS) in Simao pine.
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Background
Pinus kesiya  Royle ex Gordon var.  langbianensis  (A. 
Chev.) Gaussen (2n = 24) [64], also called Simao/Szemao 
pine in China, is a geographic variant of Pinus kesiya [54, 
55], mainly distributed in the humid and sub-humid 
mountainous areas in southwest China [30, 74]. Com-
pared with other conifer tree species, it has unique rapid 
growth characteristics that its branches can grow 2 or 

more rounds a year [41, 66]. It is one of the most impor-
tant timber and resin production tree species in Yunnan 
Province [5]. Simao pine is not only a high commercial 
value plant for its higher turpentine output [13, 57] but 
also essential tree species in the forest ecosystem for the 
function of biological carbon sequestration and water 
conservation [6, 29, 58, 73]. However, its exploitation and 
utilization are constrained by relatively lacking genetic 
information [5].

Highly saturated genetic linkage map construction is a 
useful tool for QTL mapping and MAS [19, 71, 72]. Dur-
ing the last two decades, a large number of genetic maps 
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for perennial woody plants had constructed [18, 26, 52], 
various QTLs associated with essential traits had been 
identified based on these maps [12], [42] [36]. However, 
a great majority of them were low saturated frame-work 
maps that lowered the degree of accuracy of QTL map-
ping [28, 31]. Single nucleotide polymorphism (SNP) 
is a sort of molecular marker technique developed by 
high-throughput sequencing. It is convenient, abundant, 
highly polymorphic and commonly used in genetic map 
construction [34, 45, 46]. In pace with the rapid develop-
ment technology of next-generation sequencing (NGS), 
the technology of SLAF-seq becomes one of the popular 
methods for SNP markers development and high-res-
olution genetic map construction [9, 44, 69]. Until now, 
various plants genetic linkage maps had established by 
SLAF-seq, and it greatly heighten the efficiency and the 
degree of QTL mapping accuracy [11, 37, 68, 70].

Construction of genetic linkage map for Simao pine 
will provide helpful information for genomic studies and 
facilitate the breeding applications. Growth-related traits 
were important economic traits for woody tree breeding, 
and detecting QTLs for these traits is a crucial section in 
the molecular breeding program for Simao Pine. There-
fore, we employed the SLAF-seq technology to actualize 
the fast SNPs development and a high-density linkage 
map will be constructed. The QTLs linked to growth-
related traits will be identified based on the genetic 
linkage map. It will provide a powerful tool for future 
detection of other economic characteristics QTLs and 
MAS in Simao pine breeding.

Results
Analysis of sequencing data and SLAF markers
The Simao pine SLAF libraries were constructed suc-
cessfully. A total of 461.41  M reads (guanine-cytosine 
of 40.23% and Q30 of 92.25%) were obtained. The num-
ber of reads for the maternal and paternal parents was 
22,947,158 and 18,534,664, the mean for the F1 individ-
ual was 4,659,126 (Table  1). After filtering out the low-
quality reads, the number of SLAFs for the two parents 
and average in F1 progeny was 535,598, 482,851, and 
375,315. The average depth of the SLAFs for the mater-
nal and paternal parent was 10.48-fold and 9.77-fold, and 
the average for each F1 individual was 3.47-fold (Table 1). 
A total of 633,086 high-quality SLAFs were obtained. 

Among these markers, 239,790 were polymorphic mark-
ers (37.88%), 385,976 were non-polymorphic markers 
(60.97%), and 7,320 were repetitive markers (1.15%). 
Finally, 140,485 polymorphic SLAFs of 8 segregation pat-
terns were achieved (Fig.  1). After removing the mark-
ers showing aa × bb segregation pattern, 97,891 (15.46%) 
polymorphic SLAFs will be used to further Simao pine 
genetic map construction.

Construction and evaluation of genetic linkage map
After discarding the unsuitable markers, a total of 5,643 
SLAFs were used successfully for the linkage map con-
struction. Among them, 11,544 SNP markers were 
detected (Table  2). Based on these markers, we con-
structed a high saturated genetic linkage map covering 
2062.85 cM, comprising 12 LGs, and a mean distance of 
0.37 cM (Fig. 2, Table 2). The genetic length of individual 
LGs varied from 147.38 (LG4) to 194.85 cM (LG9) with 
a mean of 171.90 cM. Among 12 LGs, LG8 was the larg-
est linkage group (523 SLAFs), while LG7 was the small-
est group (367 SLAFs). The average number of markers 
for each LG was 470. For the density, LG5 was the dens-
est linkage group with the minimum marker distance 
(0.32 cM), whereas LG1, LG3, and LG7 were the lowest 
density linkage groups (0.40  cM). The max gap in the 
map was 11.17 cM located in LG2 and LG3.

Three approaches were used for detecting the qual-
ity of Simao pine genetic map. (1) The markers integrity 
analysis showed that each individual mapped marker’s 
complete degree was 99.99% (Fig.  3), the average depth 
for parents was more than five times of the offspring 
(Table 3). It suggested that genotyping was accurate and 
the mapping population was suitable for further analysis. 
(2) The result of Haplotype maps analysis revealed that 
most of the recombination blocks were distinctly defined 
(Supplementary Fig. 1). It suggested that the constructed 
high saturated genetic map was adaptive for subse-
quent genetic analysis. (3) The analysis of Heat maps 
showed that the markers were well ordered in most link-
age groups, indicated that the constructed Simao pine 
genetic map with high accuracy (Supplementary Fig. 2).

Phenotypic variation analysis
The 3  years phenotypic data and statistical values for 
growth-related traits were summarized (Table  4). The 

Table 1  Statistics for sequenced data

Sample ID Total Reads Q30 percentage (%) GC percentage (%) SLAF Number Average Depth

SM11 22,947,158 91.72 40.27 535,598 10.48

JG1 18,534,664 91.57 39.91 482,851 9.77

offspring 4,659,126 92.25 40.23 375,315 3.47
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results showed that the four traits were normal distri-
bution for three years (Fig.  4). And a relatively higher 
degree of genetic variation was found. The CV of plant 
height was 21.74%, 14.80% and 12.07% during 2016, 2017 
and 2018. The CV of basal diameter was 25.21% (2016), 
23.42% (2017), and 22.33% (2018) respectively. The CV of 
needle length was 21.69% (2017) and 18.89% (2018). The 
CV of needle diameter was 25.96% (2017) and 21.44% 

(2018). The Pearson correlations analyses showed the sig-
nificant correlation among four traits (Table 5).

QTL mapping
Using the constructed map and analyzing the data of 
phenotypic characteristics in the mapping population, 
17 QTLs linked to 4 traits were identified (Table 6, Sup-
plementary Fig.  3). The individual QTL explained the 

Fig. 1  Segregation pattern of polymorphic SLAF markers. The x-axis represents the segregating pattern numbers and the y-axis indicates the 
genotypes of markers

Table 2  Marker information for high-density genetic map

Trv and Tri indicate the transversion and transition numbers, respectively

LGs SLAFs Number Total Distance (cM) Average 
Distance (cM)

Max Gap (cM) SNPs Number Trv Tri Trv/Tri

LG1 458 184.59 0.40 9.76 918 291 627 0.46

LG2 467 178.60 0.38 11.17 962 302 660 0.46

LG3 452 181.78 0.40 11.17 938 275 663 0.41

LG4 513 178.28 0.35 9.64 1,019 334 685 0.49

LG5 492 155.06 0.32 7.03 1,003 295 708 0.42

LG6 468 174.50 0.37 9.26 934 311 623 0.50

LG7 367 147.38 0.40 7.66 698 207 491 0.42

LG8 523 172.15 0.33 7.53 1,062 333 729 0.46

LG9 508 194.85 0.38 6.71 988 324 664 0.49

LG10 384 151.42 0.40 7.71 882 302 580 0.52

LG11 516 179.28 0.35 9.31 1,063 352 711 0.50

LG12 495 164.96 0.33 4.89 1,077 318 759 0.42

Total 5,643 2,062.85 0.37 11.17 11,544 3,644 7,900 0.46
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Fig. 2  The high-density linkage map of Simao pine. A black bar indicates a SLAF marker. The x-axis represents the linkage group number and the 
y-axis indicates the genetic distance (cM) within each linkage group

Fig. 3  The integrity distribution map of all individuals. The x-axis represents the 100 individuals and y-axis represents the complete degree of 
mapped markers



Page 5 of 11Wang et al. BMC Plant Biology           (2022) 22:48 	

phenotypic variation varied from 11.0–16.3%, and the 
LOD value ranged from 2.52 to 3.87. There were 6 plant 
height QTLs detected in the map. In 2016, two plant 
height QTLs were located on LG3 (Dh16.1) and LG10 
(Dh16.2) explained 12.7% and 12.4% of the phenotypic 
variance. In 2017, only one plant height QTL located on 
LG9 (Dh17.1) explained 15.5% of the phenotypic varia-
tion was detected. In 2018, the other three plant height 
QTLs were identified which located on LG11 (Dh18.1, 
Dh18.2), and LG12 (Dh18.3), and explained 16.3%, 16.1% 
and 13.8% of the phenotypic variation, respectively. A 
total of 5 QTLs associated with basal diameter were 
detected on LG3 (Ddb17.1, 11.6%), LG4 (Ddb17.2, 12.7%) 
and LG6 (Ddb17.3, 11.6%; Ddb17.4, 13.1%; Ddb17.5, 
11.4%), respectively. Four needle length QTLs were iden-
tified which located on LG1 (Dnl17.1, 12.1%; Dnl17.2, 
11.0%; Dnl17.3, 12.1%) and LG12 (Dnl18.1, 13.5%), 
respectively. There were two needle diameter QTLs 
located on LG4 (Dnb17.1 and Dnb18.1) explained 12.9% 
and 13.1% of the phenotypic variation were detected.

Discussion
Construction of the high-resolution map for Simao 
pine will provide helpful information for genomic stud-
ies and facilitate the breeding applications. In our study, 
a fine genetic map of Simao pine applied the technol-
ogy of SLAF-seq has been constructed. It contained 12 
LGs and 11,544 SNPs spanned 2,062.85 cM with a mean 
marker distance of 0.37  cM, representing a significant 

improvement over the previous linkage maps in conifer-
ous plants [8, 10, 14, 15, 39, 60]. As we know, this was one 
of the highest saturated genetic maps to date in conif-
erous tree species. Furthermore, a total of 17 QTLs for 
four growth-related traits were identified based on the 
constructed genetic map, and these QTLs were valuable 
resources for genetic breeding and MAS in Simao pine.

An appropriate mapping population laid a solid foun-
dation for the genetic map construction [75]. It’s hard for 
perennial woody trees to get Backcross (BC), Recombina-
tion Inbred Lines (RILs) and F2 populations in the short 
term because of the long generation constraints. The 
pseudo-testcross strategy has been put forward that the 
F1 population was created to replace the other popula-
tions [20]. This strategy has been successfully applied 
to various forestry trees, especially non-model and un-
sequenced species [32, 35, 47, 61, 62, 65]. In this report, 
nine F1 populations were obtained by artificial hybridiza-
tion, based on the analysis of field phenotypic character-
istics variation among populations and genetic similarity 
coefficient among parents, superior clones SM11 (high 
resin content) and JG1 (fast growth) were chosen for 
maternal and paternal parents. The F1 hybrid population 
was applied as the mapping population for map construc-
tion in our study. The obvious variation will present in 
the segregation population due to the significant differ-
ence in the resin content and the parents’ growth speed, 
which could facilitate QTL mapping for these traits.

Molecular markers were powerful tools for genetic map 
construction [2]. The mainstream molecular markers for 
genetic linkage map construction of heterozygous peren-
nial forest tree species included SNP, simple sequence 
repeat (SSR), inter-simple sequence repeat (ISSR), ampli-
fied fragment length polymorphism (AFLP) and random 
amplified polymorphic DNA (RAPD) et  al. [7, 21, 28, 
31, 38, 56]. Among these markers, SNP was thought of 
as one of the ideal markers for genetic map construction 
for the merits of abundance, fast and covering the whole 
genome [3, 16]. Significant changes have taken place in 
genetic map construction with the development of high-
throughput sequencing technology [15]. Recently, SLAF-
seq technique has become one of the most popular SNP 
marker development assays [45]. A high-density genetic 
linkage map for Simao pine had been successfully con-
structed by using this approach. It indicated that SNP 
markers could be efficiently applied in constructing a 
genetic linkage map of Simao pine.

High-quality genetic maps can increase the accuracy 
of QTL mapping [28, 31, 32, 35]. The number of mark-
ers in the genetic map is one of the essential indicators 
to evaluate its quality. A genetic map with a large num-
ber of markers has the characteristics of suitable distance 
and high-resolution [70]. This constructed genetic map 

Table 3  Statistics of the mapped marker depth

Sample ID Marker Number Total Depth Average Depth

SM11 5,643 243,344 43.12

JG1 5,643 220,795 39.13

Offspring 5,425 43,439 8.01

Table 4  Statistics of growth traits of mapping population during 
three consecutive years

Traits Average Min Max SD CV (%)

Height 2016 (cm) 43.89 18.4 68.7 9.54 21.74

Height 2017 (cm) 54.49 22.3 76.5 8.07 14.8

Height 2018 (cm) 90.59 57.2 113.5 10.93 12.07

Basal diameter 2016 (mm) 0.42 0.12 0.8 0.11 25.21

Basal diameter 2017 (mm) 7.66 3.26 11.65 1.79 23.42

Basal diameter 2018 (mm) 10.54 6.78 22.43 2.35 22.33

Needle length 2017 (cm) 12.05 5.23 17.91 2.61 21.69

Needle length 2018 (cm) 19 11.61 39.39 3.59 18.89

Needle diameter 2017 (mm) 0.42 0.24 0.92 0.11 25.96

Needle diameter 2018 (mm) 0.54 0.27 0.93 0.11 21.44
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Fig. 4  Frequency distributions of growth traits in mapping population during three consecutive years
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was the first map that contained over ten thousand SNP 
markers in coniferous tree species. It supported that we 
have built a high-quality genetic map for Simao Pine. 
Moreover, other three approaches were used for evalu-
ating the quality of Simao pine genetic map. All results 
indicated that the current high-accuracy map would pro-
vide sufficient information for QTL mapping.

Growth-related traits were important economic traits 
for woody tree breeding, and detecting QTLs for growth-
related traits is an introductory section in the molecular 
breeding program for Simao Pine. In this study, a total of 
17 QTLs for four growth-related traits were identified. 
The individual QTL explained the phenotypic variation 
varied from 11.0% to16.3%, and it indicated that several 

significant useful genes might control the growth-related 
traits of Simao pine (Rönnberg et  al., 2005; [28, 31]. In 
the four traits, only the QTLs for plant height were con-
sistently detected during the three years, but QTLs for 
the other three traits were not consecutively expressed. 
It suggested that different genes/QTLs might influence 
Simao pine’s growth-related traits in different seasons/
ages or that the QTLs stabilization varied by the effect 
of environmental change. In agreement with previous 
studies in the woody tree, growth-related traits were 
mainly quantitative traits, which dominated by involved 
genes and easily affected by the environment, probably 
changes as the tree matures [27, 67]. In other words, the 
multi-environment QTL analysis is more accurate than 

Table 5  The correlation coefficients between 4 traits

a significant at p < 0.05, bsignificant at p < 0.01

PH2016 BD2016 PH2017 BD2017 NL2017 ND2017 PH2018 BD2018 NL2018 ND2018

PH2016 1

BD2016 0.695b 1

PH2017 0.755b 0.578b 1

BD2017 0.246a 0.178 0.360b 1

NL2017 0.269b 0.186 0.366b 0.611b 1

ND2017 0.302b 0.323b 0.375b 0.287b 0.320b 1

PH2018 0.595b 0.389b 0.703b 0.582b 0.514b 0.290b 1

BD2018 0.372b 0.223a 0.454b 0.663b 0.447b 0.307b 0.595b 1

NL2018 0.439b 0.358b 0.480b 0.453b 0.412b 0.436b 0.530b 0.603b 1

ND2018 0.308b 0.314b 0.345b 0.288b 0.275b 0.373b 0.414b 0.277b 0.481b 1

Table 6  Quantitative trait loci (QTLs) for growth-related traits during 3 years in the mapping population

Trait Year LG QTLs Marker Peak Position (cM) Confidence Interval (cM) LOD Explained 
Variance (%)

Plant Height 2016 LG3 Dh16.1 Marker162009 29.068 18.774–45.722 2.94 12.7

LG10 Dh16.2 Marker186661 49.885 49.885–54.091 2.87 12.4

2017 LG9 Dh17.1 Marker111742 58.881 53.171–60.966 3.66 15.5

2018 LG11 Dh18.1 Marker90236 27.819 24.054–38.14 3.87 16.3

LG11 Dh18.2 Marker120973 56.742 56.237–58.268 3.82 16.1

LG12 Dh18.3 Marker31588 18.009 16.999–20.409 3.23 13.8

Basal Diameter 2017 LG3 Dbd17.1 Marker110266 170.435 169.425–170.435 2.67 11.6

LG4 Dbd17.2 Marker69728 137.585 130.262–138.461 2.95 12.7

LG6 Dbd17.3 Marker171746 82.624 82.624–84.708 2.66 11.6

LG6 Dbd17.4 Marker92854 89.329 85.214–89.329 3.04 13.1

LG6 Dbd17.5 Marker145277 104.629 102.175–105.122 2.62 11.4

Needle Length 2017 LG1 Dnl17.1 Marker36587 7.716 7.682–7.822 2.79 12.1

LG1 Dnl.17.2 Marker170751 27.84 26.017–27.84 2.52 11.0

LG1 Dnl17.3 Marker129013 95.986 95.481–98.522 2.80 12.1

2018 LG12 Dnl18.1 Marker52737 16.999 16.689–17.121 3.14 13.5

Needle Diameter 2017 LG4 Dnd17.1 Marker30236 154.595 154.137–154.616 3.00 12.9

2018 LG4 Dnd18.1 Marker160818 171.684 171.351–171.752 3.05 13.1
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a single-environment experiment for the heterozygous 
perennial woody tree growth-related traits QTL map-
ping [17]. Thus, to eliminate interference brought by the 
environment and improve QTLs accuracy, the multi-
environment QTL test in other domains using different 
backgrounds for Simao pine must be carried out in the 
future [1, 28, 31].

The size of the mapping population decided the success 
of genetic mapping and QTL analysis, and the influence 
of missing genotypes is more obvious in small-sized pop-
ulations than in large one. In general, mapping popula-
tion consisting of 50–250 individuals may be sufficient to 
construct the initial skeletal linkage map [24], [4]. How-
ever, a larger population size is needed for high resolu-
tion or fine mapping [40, 54, 55]. In our study, a main 
limitation of the Simao pine genetic linkage map is that 
it is smaller mapping population size (100 individuals), it 
may be provided fragmented linkage groups and inaccu-
rate locus order for the genetic linkage map and affected 
the accuracy of the QTL mapping [40]. It is well known 
that artificially controlled pollination of conifers trees is 
more difficult and the number of hybrid offspring is less 
than other tree species too [23]. To our knowledge, high-
density genetic maps which constructed with the small 
size mapping populations have been successfully used 
for QTL fine mapping [61, 62, 75]. However, for further 
improving the accuracy of the map and QTLs, the size of 
Simao pine mapping population must be increased in the 
future.

Conclusions
We report the first high-density genetic map for Simao 
pine. The map was constructed using an F1 population 
and was based on SNP markers developed by using the 
SLAF-seq approach, which allowed the efficient devel-
opment of a large number of markers in a short time. A 
total of 17 QTLs for growth-related traits were identified 
based on the constructed genetic map. The results of this 
study will provide a platform for map-based gene isola-
tion and molecular breeding for Simao pine.

Methods
Mapping population and DNA extraction
According to factorial mating design, eleven superior 
clones with the good characters of rapid growth and high 
resin content were selected as the hybrid parents from 
105 clones. Among them, five clones as the male parents 
(superior clone JG1, NR7, LC3, ZY1, PW2) and the other 
six clones for the female parents (PW12, LC9, JG7, JD5, 
PW3, SM11). In the spring of 2014, a total of 30 hybrid-
ized combinations of artificially controlled pollination 
were conducted. Two years later, a total of 9 full-sib fami-
lies were obtained and grown at the farm of Pu’er city 

institute of forestry sciences (N 22◦ 47′/E 100◦ 59′) by 
harvesting, sowing and culturing the seedlings. Proceed 
to the next step, family 9 was selected as the mapping 
population for Simao pine genetic linkage map construc-
tion by analyzing population phenotypic variation and 
parent’s genetic similarity coefficient [57]. The parents 
for the mapping population were superior clone SM11 
(maternal, with the characteristic of high resin content) 
and JG1 (paternal, with the aspect of rapid growth). Fresh 
and young healthy needles from parents and mapping 
population (100 hybrid individuals) were collected and 
frozen in liquid nitrogen at once. The genomic DNA was 
isolated using the improved cetyl trimethyl ammonium 
bromide (CTAB) method [53]. The permission of the 
plant materials collection was approved by Southwest 
Forestry University (project number: 2018Y31). The plant 
species was identified by Assoc. Prof. Jianghua Liu (Col-
lege of Forestry, Southwest Forestry University), and the 
voucher specimens were stored at the Key Laboratory 
for Forest Resources Conservation and Utilization in the 
Southwest Mountains of China Ministry of Education, 
Southwest Forestry University, Kunming, China.

SLAF library establishment and sequencing
The similar experiment procedure of high-throughput 
sequencing and establishment of the SLAF library for 
the mapping population was performed according to the 
previous study by Zhang et  al. [68] with minor modi-
fied. Briefly, two different steps were applied. First, all of 
the genomic DNA for SLAF library construction were 
digested by a single enzyme Hae  III (New England Bio-
labs, NEB, USA). Second, only the SLAF fragments 
in which the length ranging from 414 to 464 bp will be 
excised and diluted for pair-end sequenced by Illumina 
HiSeq 2500 platform (Illumina, Inc; San Diego, CA, 
USA).

Analysing and genotyping for sequence data
The SLAF-seq data grouping and SNP genotyping were 
the same as Wang et  al. [56]. After discarding the low-
quality reads, the remaining reads with more than 90% 
similarity will gather in the same SLAF locus. As Simao 
pine is a diploid plant, so only the SLAF has 2 to 4 alleles 
that will designate as the potential and polymorphic 
marker. The aa × bb segregation pattern markers will not 
be used to construct the genetic map, as the mapping 
population is obtaining by a cross between two heterozy-
gote parents of Simao pine [22, 25].

Linkage map construction and evaluation
The HighMap software [22] with the cross-pollination 
(CP) option was utilized for Simao pine genetic linkage 
map construction. The estimation parameters were set 
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for a minimum LOD threshold of 5.0 for linkage groups 
and a maximum recombination fraction of 0.4, and the 
map distance in centi-Morgans was calculated with the 
Kosambi mapping algorithm [51]. After linkage group-
ing, the maximum likelihood method was used to order 
the SLAFs markers in all LGs [50], [37]. The SMOOTH 
algorithm was utilized to put correct genotyping 
errors [49]. To evaluate the quality of the constructed 
Simao pine genetic map, the analysis of mapped mark-
ers integrity, construction of haplotype maps and heat 
maps for each LG were carried out [33, 59, 63].

Growth‑related traits assessment and QTL analysis
Growth-related traits, including plant height, basal 
diameter, needle length, and needle diameter of the 
progenies are determined during three consecutive 
years. The plant height and needle length were meas-
ured by a line tape, while the basal diameter and nee-
dle diameter were measured with the vernier caliper 
in December from 2016–2018. The phenotypic vari-
ation analysis, including coefficients of variation (CV) 
and the correlation coefficients between all investigated 
traits, was performed with software SPSS 20.0. The 
QTLs underlying the growth-related traits were imple-
mented in MapQTL 6.0 software and the interval map-
ping method [48]. The 95% Bayesian credible interval 
method was used to calculate the confidence intervals 
for all QTLs [43]. One thousand permutations decided 
the threshold value. According to the permutations, 
the minimum LOD score of 2.5 was conducted in our 
study. The percentage of phenotypic variance explained 
of each detected QTL was achieved based on the phe-
notypic variance in the population [65].
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